Logo Search packages:      
Sourcecode: heaplayers version File versions

pair.c

#include "espresso.h"

void set_pair(PLA)
pPLA PLA;
{
    set_pair1(PLA, TRUE);
}

void set_pair1(PLA, adjust_labels)
pPLA PLA;
bool adjust_labels;
{
    int i, var, *paired, newvar;
    int old_num_vars, old_num_binary_vars, old_size, old_mv_start;
    int *new_part_size, new_num_vars, new_num_binary_vars, new_mv_start;
    ppair pair = PLA->pair;
    char scratch[1000], **oldlabel, *var1, *var1bar, *var2, *var2bar;

    if (adjust_labels)
      makeup_labels(PLA);

    /* Check the pair structure for valid entries and see which binary
      variables are left unpaired
    */
    paired = ALLOC(bool, cube.num_binary_vars);
    for(var = 0; var < cube.num_binary_vars; var++)
      paired[var] = FALSE;
    for(i = 0; i < pair->cnt; i++)
      if ((pair->var1[i] > 0 && pair->var1[i] <= cube.num_binary_vars) &&
           (pair->var2[i] > 0 && pair->var2[i] <= cube.num_binary_vars)) {
          paired[pair->var1[i]-1] = TRUE;
          paired[pair->var2[i]-1] = TRUE;
      } else
          fatal("can only pair binary-valued variables");

    PLA->F = delvar(pairvar(PLA->F, pair), paired);
    PLA->R = delvar(pairvar(PLA->R, pair), paired);
    PLA->D = delvar(pairvar(PLA->D, pair), paired);

    /* Now painfully adjust the cube size */
    old_size = cube.size;
    old_num_vars = cube.num_vars;
    old_num_binary_vars = cube.num_binary_vars;
    old_mv_start = cube.first_part[cube.num_binary_vars];
    /* Create the new cube.part_size vector and setup the cube structure */
    new_num_binary_vars = 0;
    for(var = 0; var < old_num_binary_vars; var++)
      new_num_binary_vars += (paired[var] == FALSE);
    new_num_vars = new_num_binary_vars + pair->cnt;
    new_num_vars += old_num_vars - old_num_binary_vars;
    new_part_size = ALLOC(int, new_num_vars);
    for(var = 0; var < pair->cnt; var++)
      new_part_size[new_num_binary_vars + var] = 4;
    for(var = 0; var < old_num_vars - old_num_binary_vars; var++)
      new_part_size[new_num_binary_vars + pair->cnt + var] =
          cube.part_size[old_num_binary_vars + var];
    setdown_cube();
    FREE(cube.part_size);
    cube.num_vars = new_num_vars;
    cube.num_binary_vars = new_num_binary_vars;
    cube.part_size = new_part_size;
    cube_setup();

    /* hack with the labels to get them correct */
    if (adjust_labels) {
      oldlabel = PLA->label;
      PLA->label = ALLOC(char *, cube.size);
      for(var = 0; var < pair->cnt; var++) {
          newvar = cube.num_binary_vars*2 + var*4;
          var1 = oldlabel[ (pair->var1[var]-1) * 2 + 1];
          var2 = oldlabel[ (pair->var2[var]-1) * 2 + 1];
          var1bar = oldlabel[ (pair->var1[var]-1) * 2];
          var2bar = oldlabel[ (pair->var2[var]-1) * 2];
          (void) sprintf(scratch, "%s+%s", var1bar, var2bar);
          PLA->label[newvar] = util_strsav(scratch);
          (void) sprintf(scratch, "%s+%s", var1bar, var2);
          PLA->label[newvar+1] = util_strsav(scratch);
          (void) sprintf(scratch, "%s+%s", var1, var2bar);
          PLA->label[newvar+2] = util_strsav(scratch);
          (void) sprintf(scratch, "%s+%s", var1, var2);
          PLA->label[newvar+3] = util_strsav(scratch);
      }
      /* Copy the old labels for the unpaired binary vars */
      i = 0;
      for(var = 0; var < old_num_binary_vars; var++) {
          if (paired[var] == FALSE) {
            PLA->label[2*i] = oldlabel[2*var];
            PLA->label[2*i+1] = oldlabel[2*var+1];
            oldlabel[2*var] = oldlabel[2*var+1] = (char *) NULL;
            i++;
          }
      }
      /* Copy the old labels for the remaining unpaired vars */
      new_mv_start = cube.num_binary_vars*2 + pair->cnt*4;
      for(i = old_mv_start; i < old_size; i++) {
          PLA->label[new_mv_start + i - old_mv_start] = oldlabel[i];
          oldlabel[i] = (char *) NULL;
      }
      /* free remaining entries in oldlabel */
      for(i = 0; i < old_size; i++)
          if (oldlabel[i] != (char *) NULL)
            FREE(oldlabel[i]);
      FREE(oldlabel);
    }

    /* the paired variables should not be sparse (cf. mv_reduce/raise_in)*/
    for(var = 0; var < pair->cnt; var++)
      cube.sparse[cube.num_binary_vars + var] = 0;
    FREE(paired);
}

pcover pairvar(A, pair)
pcover A;
ppair pair;
{
    register pcube last, p;
    register int val, p1, p2, b1, b0;
    int insert_col, pairnum;

    insert_col = cube.first_part[cube.num_vars - 1];

    /* stretch the cover matrix to make room for the paired variables */
    A = sf_delcol(A, insert_col, -4*pair->cnt);

    /* compute the paired values */
    foreach_set(A, last, p) {
      for(pairnum = 0; pairnum < pair->cnt; pairnum++) {
          p1 = cube.first_part[pair->var1[pairnum] - 1];
          p2 = cube.first_part[pair->var2[pairnum] - 1];
          b1 = is_in_set(p, p2+1);
          b0 = is_in_set(p, p2);
          val = insert_col + pairnum * 4;
          if (/* a0 */ is_in_set(p, p1)) {
            if (b0)
                set_insert(p, val + 3);
            if (b1)
                set_insert(p, val + 2);
          }
          if (/* a1 */ is_in_set(p, p1+1)) {
            if (b0)
                set_insert(p, val + 1);
            if (b1)
                set_insert(p, val);
          }
      }
    }
    return A;
}


/* delvar -- delete variables from A, minimize the number of column shifts */
pcover delvar(A, paired)
pcover A;
bool paired[];
{
    bool run;
    int first_run, run_length, var, offset = 0;

    run = FALSE; run_length = 0;
    for(var = 0; var < cube.num_binary_vars; var++)
      if (paired[var])
          if (run)
            run_length += cube.part_size[var];
          else {
            run = TRUE;
            first_run = cube.first_part[var];
            run_length = cube.part_size[var];
          }
      else
          if (run) {
            A = sf_delcol(A, first_run-offset, run_length);
            run = FALSE;
            offset += run_length;
          }
    if (run)
      A = sf_delcol(A, first_run-offset, run_length);
    return A;
}

/*
    find_optimal_pairing -- find which binary variables should be paired
    to maximally reduce the number of terms

    This is essentially the technique outlined by T. Sasao in the
    Trans. on Comp., Oct 1984.  We estimate the cost of pairing each
    pair individually using 1 of 4 strategies: (1) algebraic division
    of F by the pair (exactly T. Sasao technique); (2) strong division
    of F by the paired variables (using REDUCE/EXPAND/ IRREDUNDANT from
    espresso); (3) full minimization using espresso; (4) exact
    minimization.  These are in order of both increasing accuracy and
    increasing difficulty (!)

    Once the n squared pairs have been evaluated, T. Sasao proposes a
    graph covering of nodes by disjoint edges.  For now, I solve this
    problem exhaustively (complexity = (n-1)*(n-3)*...*3*1 for n
    variables when n is even).  Note that solving this problem exactly
    is the same as evaluating the cost function for all possible
    pairings.

                         n       pairs

                       1, 2           1
                       3, 4           3
                       5, 6          15
                       7, 8         105
                       9,10         945
                      11,12      10,395
                      13,14     135,135
                      15,16   2,027,025
                      17,18  34,459,425
                      19,20 654,729,075
*/
void find_optimal_pairing(PLA, strategy)
pPLA PLA;
int strategy;
{
    int i, j, **cost_array;

    cost_array = find_pairing_cost(PLA, strategy);

    if (summary) {
      printf("    ");
      for(i = 0; i < cube.num_binary_vars; i++)
          printf("%3d ", i+1);
      printf("\n");
      for(i = 0; i < cube.num_binary_vars; i++) {
          printf("%3d ", i+1);
          for(j = 0; j < cube.num_binary_vars; j++)
            printf("%3d ", cost_array[i][j]);
          printf("\n");
      }
    }

    if (cube.num_binary_vars <= 14) {
      PLA->pair = pair_best_cost(cost_array);
    } else {
      (void) greedy_best_cost(cost_array, &(PLA->pair));
    }
    printf("# ");
    print_pair(PLA->pair);
      
    for(i = 0; i < cube.num_binary_vars; i++)
      FREE(cost_array[i]);
    FREE(cost_array);

    set_pair(PLA);
    EXEC_S(PLA->F=espresso(PLA->F,PLA->D,PLA->R),"ESPRESSO  ",PLA->F);
}

int **find_pairing_cost(PLA, strategy)
pPLA PLA;
int strategy;
{
    int var1, var2, **cost_array;
    int i, j, xnum_binary_vars, xnum_vars, *xpart_size, cost;
    pcover T, Fsave, Dsave, Rsave;
    pset mask;
/*    char *s;*/

    /* data is returned in the cost array */
    cost_array = ALLOC(int *, cube.num_binary_vars);
    for(i = 0; i < cube.num_binary_vars; i++)
      cost_array[i] = ALLOC(int, cube.num_binary_vars);
    for(i = 0; i < cube.num_binary_vars; i++)
      for(j = 0; j < cube.num_binary_vars; j++)
          cost_array[i][j] = 0;

    /* Setup the pair structure for pairing variables together */
    PLA->pair = pair_new(1);
    PLA->pair->cnt = 1;

    for(var1 = 0; var1 < cube.num_binary_vars-1; var1++) {
      for(var2 = var1+1; var2 < cube.num_binary_vars; var2++) {
          /* if anything but simple strategy, perform setup */
          if (strategy > 0) {
            /* save the original covers */
            Fsave = sf_save(PLA->F);
            Dsave = sf_save(PLA->D);
            Rsave = sf_save(PLA->R);

            /* save the original cube structure */
            xnum_binary_vars = cube.num_binary_vars;
            xnum_vars = cube.num_vars;
            xpart_size = ALLOC(int, cube.num_vars);
            for(i = 0; i < cube.num_vars; i++)
                xpart_size[i] = cube.part_size[i];

            /* pair two variables together */
            PLA->pair->var1[0] = var1 + 1;
            PLA->pair->var2[0] = var2 + 1;
            set_pair1(PLA, /* adjust_labels */ FALSE);
          }


          /* decide how to best estimate worth of this pairing */
          switch(strategy) {
            case 3:
                /*s = "exact minimization";*/
                PLA->F = minimize_exact(PLA->F, PLA->D, PLA->R, 1);
                cost = Fsave->count - PLA->F->count;
                break;
            case 2:
                /*s = "full minimization";*/
                PLA->F = espresso(PLA->F, PLA->D, PLA->R);
                cost = Fsave->count - PLA->F->count;
                break;
            case 1:
                /*s = "strong division";*/
                PLA->F = reduce(PLA->F, PLA->D);
                PLA->F = expand(PLA->F, PLA->R, FALSE);
                PLA->F = irredundant(PLA->F, PLA->D);
                cost = Fsave->count - PLA->F->count;
                break;
            case 0:
                /*s = "weak division";*/
                mask = new_cube();
                set_or(mask, cube.var_mask[var1], cube.var_mask[var2]);
                T = dist_merge(sf_save(PLA->F), mask);
                cost = PLA->F->count - T->count;
                sf_free(T);
                set_free(mask);
          }

          cost_array[var1][var2] = cost;

          if (strategy > 0) {
            /* restore the original cube structure -- free the new ones */
            setdown_cube();
            FREE(cube.part_size);
            cube.num_binary_vars = xnum_binary_vars;
            cube.num_vars = xnum_vars;
            cube.part_size = xpart_size;
            cube_setup();

            /* restore the original cover(s) -- free the new ones */
            sf_free(PLA->F);
            sf_free(PLA->D);
            sf_free(PLA->R);
            PLA->F = Fsave;
            PLA->D = Dsave;
            PLA->R = Rsave;
          }
      }
    }

    pair_free(PLA->pair);
    PLA->pair = NULL;
    return cost_array;
}

static int best_cost;
static int **cost_array;
static ppair best_pair;
static pset best_phase;
static pPLA global_PLA;
static pcover best_F, best_D, best_R;
static int pair_minim_strategy;


print_pair(pair)
ppair pair;
{
    int i;

    printf("pair is");
    for(i = 0; i < pair->cnt; i++)
      printf (" (%d %d)", pair->var1[i], pair->var2[i]);
    printf("\n");
}


int greedy_best_cost(cost_array_local, pair_p)
int **cost_array_local;
ppair *pair_p;
{
    int i, j, besti, bestj, maxcost, total_cost;
    pset cand;
    ppair pair;

    pair = pair_new(cube.num_binary_vars);
    cand = set_full(cube.num_binary_vars);
    total_cost = 0;

    while (set_ord(cand) >= 2) {
      maxcost = -1;
      for(i = 0; i < cube.num_binary_vars; i++) {
          if (is_in_set(cand, i)) {
            for(j = i+1; j < cube.num_binary_vars; j++) {
                if (is_in_set(cand, j)) {
                  if (cost_array_local[i][j] > maxcost) {
                      maxcost = cost_array_local[i][j];
                      besti = i;
                      bestj = j;
                  }
                }
            }
          }
      }
      pair->var1[pair->cnt] = besti+1;
      pair->var2[pair->cnt] = bestj+1;
      pair->cnt++;
      set_remove(cand, besti);
      set_remove(cand, bestj);
      total_cost += maxcost;
    }
    set_free(cand);
    *pair_p = pair;
    return total_cost;
}


ppair pair_best_cost(cost_array_local)
int **cost_array_local;
{
    ppair pair;
    pset candidate;

    best_cost = -1;
    best_pair = NULL;
    cost_array = cost_array_local;

    pair = pair_new(cube.num_binary_vars);
    candidate = set_full(cube.num_binary_vars);
    generate_all_pairs(pair, cube.num_binary_vars, candidate, find_best_cost);
    pair_free(pair);
    set_free(candidate);
    return best_pair;
}


int find_best_cost(pair)
register ppair pair;
{
    register int i, cost;

    cost = 0;
    for(i = 0; i < pair->cnt; i++)
      cost += cost_array[pair->var1[i]-1][pair->var2[i]-1];
    if (cost > best_cost) {
      best_cost = cost;
      best_pair = pair_save(pair, pair->cnt);
    }
    if ((debug & MINCOV) && trace) {
      printf("cost is %d ", cost);
      print_pair(pair);
    }
}

/*
    pair_all: brute-force approach to try all possible pairings

    pair_strategy is:
      2) for espresso
      3) for minimize_exact
      4) for phase assignment
*/

pair_all(PLA, pair_strategy)
pPLA PLA;
int pair_strategy;
{
    ppair pair;
    pset candidate;

    global_PLA = PLA;
    pair_minim_strategy = pair_strategy;
    best_cost = PLA->F->count + 1;
    best_pair = NULL;
    best_phase = NULL;
    best_F = best_D = best_R = NULL;
    pair = pair_new(cube.num_binary_vars);
    candidate = set_fill(set_new(cube.num_binary_vars), cube.num_binary_vars);

    generate_all_pairs(pair, cube.num_binary_vars, candidate, minimize_pair);

    pair_free(pair);
    set_free(candidate);

    PLA->pair = best_pair;
    PLA->phase = best_phase;
/* not really necessary
    if (phase != NULL)
      (void) set_phase(PLA->phase);
*/
    set_pair(PLA);
    printf("# ");
    print_pair(PLA->pair);

    sf_free(PLA->F);
    sf_free(PLA->D);
    sf_free(PLA->R);
    PLA->F = best_F;
    PLA->D = best_D;
    PLA->R = best_R;
}


/*
 *  minimize_pair -- called as each pair is generated
 */
int minimize_pair(pair)
ppair pair;
{
    pcover Fsave, Dsave, Rsave;
    int i, xnum_binary_vars, xnum_vars, *xpart_size;

    /* save the original covers */
    Fsave = sf_save(global_PLA->F);
    Dsave = sf_save(global_PLA->D);
    Rsave = sf_save(global_PLA->R);

    /* save the original cube structure */
    xnum_binary_vars = cube.num_binary_vars;
    xnum_vars = cube.num_vars;
    xpart_size = ALLOC(int, cube.num_vars);
    for(i = 0; i < cube.num_vars; i++)
      xpart_size[i] = cube.part_size[i];

    /* setup the paired variables */
    global_PLA->pair = pair;
    set_pair1(global_PLA, /* adjust_labels */ FALSE);

    /* call the minimizer */
    if (summary)
      print_pair(pair);
    switch(pair_minim_strategy) {
      case 2:
          EXEC_S(phase_assignment(global_PLA,0), "OPO       ", global_PLA->F);
          if (summary)
            printf("# phase is %s\n", pc1(global_PLA->phase));
          break;
      case 1:
          EXEC_S(global_PLA->F = minimize_exact(global_PLA->F, global_PLA->D,
            global_PLA->R, 1), "EXACT     ", global_PLA->F);
          break;
      case 0:
          EXEC_S(global_PLA->F = espresso(global_PLA->F, global_PLA->D,
            global_PLA->R), "ESPRESSO  ", global_PLA->F);
          break;
      default:
          break;
    }

    /* see if we have a new best solution */
    if (global_PLA->F->count < best_cost) {
      best_cost = global_PLA->F->count;
      best_pair = pair_save(pair, pair->cnt);
      best_phase = global_PLA->phase!=NULL?set_save(global_PLA->phase):NULL;
      if (best_F != NULL) sf_free(best_F);
      if (best_D != NULL) sf_free(best_D);
      if (best_R != NULL) sf_free(best_R);
      best_F = sf_save(global_PLA->F);
      best_D = sf_save(global_PLA->D);
      best_R = sf_save(global_PLA->R);
    }

    /* restore the original cube structure -- free the new ones */
    setdown_cube();
    FREE(cube.part_size);
    cube.num_binary_vars = xnum_binary_vars;
    cube.num_vars = xnum_vars;
    cube.part_size = xpart_size;
    cube_setup();

    /* restore the original cover(s) -- free the new ones */
    sf_free(global_PLA->F);
    sf_free(global_PLA->D);
    sf_free(global_PLA->R);
    global_PLA->F = Fsave;
    global_PLA->D = Dsave;
    global_PLA->R = Rsave;
    global_PLA->pair = NULL;
    global_PLA->phase = NULL;
}

generate_all_pairs(pair, n, candidate, action)
ppair pair;
int n;
pset candidate;
int (*action)();
{
    int i, j;
    pset recur_candidate;
    ppair recur_pair;

    if (set_ord(candidate) < 2) {
      (*action)(pair);
      return;
    }

    recur_pair = pair_save(pair, n);
    recur_candidate = set_save(candidate);

    /* Find first variable still in the candidate set */
    for(i = 0; i < n; i++)
      if (is_in_set(candidate, i))
          break;

    /* Try all pairs of i with other variables */
    for(j = i+1; j < n; j++)
      if (is_in_set(candidate, j)) {
          /* pair (i j) -- remove from candidate set for future pairings */
          set_remove(recur_candidate, i);
          set_remove(recur_candidate, j);

          /* add to the pair array */
          recur_pair->var1[recur_pair->cnt] = i+1;
          recur_pair->var2[recur_pair->cnt] = j+1;
          recur_pair->cnt++;

          /* recur looking for the end ... */
          generate_all_pairs(recur_pair, n, recur_candidate, action);

          /* now break this pair, and restore candidate set */
          recur_pair->cnt--;
          set_insert(recur_candidate, i);
          set_insert(recur_candidate, j);
      }

    /* if odd, generate all pairs which do NOT include i */
    if ((set_ord(candidate) % 2) == 1) {
      set_remove(recur_candidate, i);
      generate_all_pairs(recur_pair, n, recur_candidate, action);
    }

    pair_free(recur_pair);
    set_free(recur_candidate);
}

ppair pair_new(n)
register int n;
{
    register ppair pair1;

    pair1 = ALLOC(pair_t, 1);
    pair1->cnt = 0;
    pair1->var1 = ALLOC(int, n);
    pair1->var2 = ALLOC(int, n);
    return pair1;
}


ppair pair_save(pair, n)
register ppair pair;
register int n;
{
    register int k;
    register ppair pair1;

    pair1 = pair_new(n);
    pair1->cnt = pair->cnt;
    for(k = 0; k < pair->cnt; k++) {
      pair1->var1[k] = pair->var1[k];
      pair1->var2[k] = pair->var2[k];
    }
    return pair1;
}


int pair_free(pair)
register ppair pair;
{
    FREE(pair->var1);
    FREE(pair->var2);
    FREE(pair);
}

Generated by  Doxygen 1.6.0   Back to index